mach.io.must#
Helper functions for reading PyMUST data.
Functions
| Download and load the PyMUST PWI_disk.mat test data. | |
| 
 | Extract PyMUST parameters from loaded MATLAB data. | 
| 
 | Generate element positions for a linear array. | 
| 
 | Return a flattened meshgrid of the given axes. | 
- mach.io.must.download_pymust_doppler_data() dict#
- Download and load the PyMUST PWI_disk.mat test data. - This data contains ultrasound RF data from a rotating disk phantom, commonly used for benchmarking beamforming algorithms. - Returns:
- MATLAB data structure containing RF data and parameters 
- Return type:
 
- mach.io.must.extract_pymust_params(mat_data: dict) dict#
- Extract PyMUST parameters from loaded MATLAB data. - Parameters:
- mat_data – PyMUST data loaded from .mat file by download_pymust_doppler_data 
- Returns:
- PyMUST acquisition parameters including:
- Nelements: Number of array elements 
- pitch: Element spacing [m] 
- c: Speed of sound [m/s] 
- fs: Sampling frequency [Hz] 
- fc: Center frequency [Hz] 
- t0: Start time [s] 
- fnumber: F-number for beamforming 
 
 
- Return type:
 
- mach.io.must.linear_probe_positions( ) Float[ndarray, '{n_elements} xyz=3']#
- Generate element positions for a linear array. - Parameters:
- n_elements – Number of elements 
- pitch – Element spacing [m] 
 
- Returns:
- Element positions [x, y, z] with shape (N_elements, 3) 
 
- mach.io.must.scan_grid(
- *axes: ndarray,
- Return a flattened meshgrid of the given axes. - Example
- >>> x = np.linspace(-1.25e-2, 1.25e-2, num=251, endpoint=True) >>> y = np.array([0.0]) >>> z = np.linspace(1e-2, 3.5e-2, num=251, endpoint=True) >>> grid = scan_grid(x, y, z) >>> grid.shape (63001, 3) >>> grid